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1 Introduction and Assumptions

The conservation equations for the two-stream radiation approximation follow
those presented in Sellers (1985) and Bonan (1996). At is core, the mathematical
model assumes that the scattering media is homogeneous and continuous in both
the vertical and horizontal plane and infinite in the horizontal plane. Radiation
intensity is assumed to be uniform in the horizontal plane, and varies over the
vertical depth of the scattering media.

The radiation scattering model described here makes some key extensions
and breakages from these original assumptions. Firstly, while scattering inside
an element is assumed to be continuous and homogenous, we will very often
place elements in sequence vertically, where the boundary conditions (i.e. the
radiative intensity of their upper and lower edges) balance with another element
on its border. And secondly, we allow for the breaking from the assumption of a
horizontally infinite plane (if desired), which enables the scattering of radiation
through media with different properties in parallel with each other. This enables
the representation of the existing fates canopy scattering geometries, such as
those formed via the Perfect Plasticity Approximation (Purves et al., 2008).
Part of the discussion in this document addresses the affects of breaking this
assumption.

2 Governing Conservation Equations andMethod
of Solution

Here Rdn(v) and Rup(v) are the down-welling and up-welling diffuse radiation [W
m−2] respectively, and they vary over the independent coordinate v which is the
integrated amount of media encountered going from the top of the scattering
element downward (i.e. total vegetation area index [m2 m−2]). This uses the
following constants: Rb0 [W m−2] is the beam radiation incident at the top of
the scattering media, κd and κb are the optical depth per unit scattering me-
dia for diffuse and beam radiation respectively, ω is the scattering coefficient (ie
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material reflectance) of the scattering media, and βd and βb are the back-scatter
fractions of diffuse and beam radiation respectively.

A note about symbols and subscripts: Subscript d refers to ”diffuse” not ”down”,
subscript b refers to ”beam”. Up and down conventions use subscripts up and
dn.

For the most part, the diffuse scattering parameters depend on the compo-
sition of the media, or in other words, the geometry and composition of the
vegetation canopy, whereas the beam scattering constants are dependant on the
canopy composition and zenith angle as well.

Figure 1: Visualization of the roles the scattering constants play in the two
stream system.

The conservation equations are defined as follows:

dRdn

dv
=

self sink︷ ︸︸ ︷
−κd(1− (1− βd)ω)Rdn +

up source︷ ︸︸ ︷
κdβdωRup +

beam source︷ ︸︸ ︷
κbω(1− βb)Rb0e

−κbv

−dRup

dv
=

self sink︷ ︸︸ ︷
−κd(1− (1− βd)ω)Rup +

down source︷ ︸︸ ︷
κdβdωRdn +

beam source︷ ︸︸ ︷
κbωβbRb0e

−κbv

(1)

Each equation has two source terms. One term captures how the opposite
stream is converted into the current stream. The other source is where the
beam term is scattered into the current stream. The sink term is the rate at
which the current stream is either absorbed by the media or re-scattered in the
other direction. Note that for the upwelling radiation equation, the sign on the
differential is swapped. This is simply because the direction of the upwelling
radiation is in the negative v direction.

2



The generalized analytical solution to Equation 1 is provided in a simplified
form in Equation 2. The terms Aup, Adn, B1, B2 and a represent different
complex combinations of the original coefficients κ, β and ω (for readability).
The terms λ are solved via a linear system of equations that utilize the boundary
conditions at the top of the canopy.

Rup(v) = Aupe
−κbv +B1e

avλ1 +B2e
−avλ2

Rdn(v) = Adne
−κbv +B2e

avλ1 +B1e
−avλ2

(2)

There have been several papers published that find solutions to the two-
stream. We most closely followed the methods described in Liou (2002). These
methods were also adapted by Longo et al. (2019), which are nearyl identical to
the mathematical manipulations that describe the formulation of the generalized
analytical solution (with the main exception being, that methodology adhered
strictly to a system of serial scattering elements, and no parallel elements).

2.1 Method of Solution

The analytical solution shown in Equation 2 was achieved by performing the
following manipulations on the conservation equations (Equation 1):

1. re-casting the dependent variables, up and downwelling diffuse radiation,
as their difference R− and their addition R+

2. calculating the second order differential of these two terms (d
2R−
dv2 and

d2R+

dv2 ), which decouples them from each other

3. deriving a generalized analytical solution for each second order equation
with unknown constants

4. reducing the number of unknown constants by combining the analytical
solution with the transformed conservation equation

5. translating the analytical solution with reduced constants back to the
original up/down coordinate

These steps are carried out in explicit detail in the Appendix, Section 6.1.

3 Solving as a Linear System for Parallel and
Serial Elements

As mentioned in Section 1, the two-stream scattering defined above in Equation
2, represent scattering in continuous media with homogeneous scattering coef-
ficients. However, the optical properties and scattering media density of real
vegetation canopies vary in vertical and horizontal space.
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To enable scattering over media where the scattering coefficients (i.e. dif-
ferent orientation angles, scattering albedos, backscatter and/or unit optical
depth) change in space, one method is create a system of discrete scattering
elements that are internally homogenous and continuous, yet pass radiation
intensity to each other as boundary conditions in a system of equations.

For FATES, we use a Perfect Plasticity Approximation (PPA), which results
in the canopy being partitioned in horizontal space by functional types, and
vertical space by canopy layer.

Figure 2: An example diagram of how scattering elements interconnect for two-
stream radiation in a FATES assembled vegetation canopy using the Perfect
Plasticity Approximation. This example assumes the canopy is compsed of two
generic plant functional types (PFT 1 and 2), where both functional types in-
habit an upper story (canopy) and lower story. By PPA definition, any layer
above the understory is fully closed, and any layer at the ground will have some
non-zero amount of exposed soil. The orange lines represent how downwelling
and upwelling diffuse radiation flow from the atmosphere to the scattering el-
ements, and then on to scattering elements and the soil below, and then back
again. Note that above the canopy, and in-between layers the radiation collapses
to a node. This illustrates the point that radiation intensity at these points is
”mixed”, or in other words, horizontally homogeneous.
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The process of connecting the boundary conditions of these scattering ele-
ments requires that we represent the share of horizontal space taken up by each,
as a fraction of the total space fA. Therefore, the mean radiant intensity be-
tween canopy layers, for both up-welling or down-welling radiation, will require
a weighted sum of the intensity on the boundary of each scattering element,
and potentially the boundary of any exposed ground. An example of a PPA
canopy is provided in Figure 3. In this scenario, there are two plant functional
types, where both are found in the upper layer, and both are found in the lower
canopy layer. We assume that the scattering is continuous inside these elements
following the conservation Equations 1 and the resulting analytical Solution 2.
These elements can be connected in a system of equations, where the number
of equations matches the number of unknown coefficients λ. In this example,
there are 4 unique scattering elements, each with two λ terms, requiring a total
of 8 equations.

Two equations connect the down-welling radiation coming from the atmo-
sphere (constant over an interval of time, and known), one for each of the two
scattering elements in the canopy. Two equations represent the boundary of
mean down-welling radiation exiting the upper canopy, and entering each of
the two pfts in the lower canopy. Two equations represent the mean up-welling
radiation leaving the lower canopy and entering each of the two scattering ele-
ments in the upper canopy. And finally, we have two equations representing the
boundary conditions between the two scattering elements in the lower canopy
and the ground. This system will allow us to create an 8x8 matrix Ω, operated
upon by vector Λ (i.e. the vector of λ) that equals a column vector with the
additive terms Φ.

Φ = Ω · Λ
(3)

In this system, we perform inversion to solve for vector Λ which then allows
us to retrieve the scattering intensity as well as the absorption of scattering
media anywhere in the system. We will use the following convention for indexing
elements. Scattering elements are indexed by ascending PFT number, which
are visually represented left to right, and then top down. When constructing
balance equations, we will refer to elements in an upper canopy layer with index
i within a set of elements I. We will refer to elements in the lower canopy layer
with index j within a set J .

3.1 Solution for Upper Boundary with Atmosphere

The equation balancing down-welling diffuse radiation intensity from the atmo-
sphere Rd,atm parts. This is applied to both of the first two scattering elements,
those in the upper canopy, i = 1, 2. Recall that the system of equations is
really only solving for the diffuse components of radiation, and the complex
terms already include the transmission and attenuation of beam radiation in
the canopy.
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Rd,atm = Adn(i) + λ1(i)B2(i) + λ2(i)B1(i)

(4)

Or, rearranging so that the Φ term is on the left side of the equation:

Rd,atm −Adn(i) = λ1(i) ·B2(i) + λ2(i) ·B1(i)

(5)

3.2 Solutions for Boundaries Between Canopy Layers

3.2.1 Down-welling

For the downward stream, the mean radiation coming from elements in set I in
the layer above needs to balance with the mean radiation entering the top of any
element j of the layer below. If there is a lower layer, then FATES assumes that
the upper layer is closed (ie perfectly plastic) and the areas fA(i) should sum
to unity. Note that the down-welling radiation exiting the upper layer elements
is evaluated at v = V (i.e. the bottom of the media), and the down-welling
radiation at the top of the lower element is evaluated at the top of the media
v = 0.

Rdn(v=0,j) =

I∑
fA(i)Rnd(v=V,i)

Adn(j) + λ1(j)B2(j) + λ2(j)B1(j) =

I∑
fA(i)

(
Adn(i)e

−κbV + λ1(i)B2(i)e
aV + λ2(i)B1(i)e

−aV
)

(6)

This is expanded and partitioned into terms with and without λ. The left
side is a component of Φ and the right side are components of Ω and Λ:

Adn(j) −
I∑

fA(i)Adn(i)e
−κbV =

I∑
fA(i)

(
λ1(i) ·B2(i)e

aV + λ2(i) ·B1(i)e
−aV

)
− λ1(j) ·B2(j) − λ2(j) ·B1(j))

(7)
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3.2.2 Up-welling

For the upward stream, the mean radiation coming from elements j in set J
in the layer below, needs to balance with the radiation entering the top of any
element i in the layer above. Note, there may be exposed ground reflecting light,
however recall that a ”ghost element” is applied with zero optical depth for open
canopy areas at all layers. This element will transfer that un-obstructed light.

Rup(v=V,i) =

J∑
fA(j)Rup(v=0,j)

(8)

Equation 8 can then be expanded by substituting in Equation 2, to generate
balance Equation 9. This can then be organized into the components in Φ (left
side) and Ω (right side), see Equation 10.

Aup(i)e
−κbV + λ1(i)B1(i)e

aV + λ2(i)B2(i)e
−aV =

J∑(
fA(j)Aup(j) + λ1(j)B1(j) + λ2(j)B2(j)

)
(9)

Aup(i)e
−κbV −

J∑(
fA(j)Aup(j)

)
=

J∑(
fA(j) + λ1(j)B1(j) + λ2(j)B2(j)

)
− λ1(i)B1(i)e

aV − λ2(i)B2(i)e
−aV

(10)

3.3 Solutions for Boundaries Between the Bottom Layer
and the Ground

Here we form a flux balance between the lower edge of any scattering elements
in the lowest layer of the canopy. For elements indexed j in the lowest canopy
layer, the sum of the beam radiation at the bottom of the element times the
ground beam albedo, and the down-welling diffuse radiation at the bottom of
the element (v = V ) is reflected by the diffuse ground albedo and should equal
the up-welling radiation at the bottom of the same element v = V . The beam
radiation intensity at the bottom of the element Rb(v=V,j) is straightforward
and can be derived from the trivial beam attenuation algorithm.

Rup(v=V,j) = ωgdRdn(v=V,j) + ωgbRb(v=V,j) (11)
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Aup(j)e
−κbV + λ1(j)B1(j)e

aV + λ2(j)B2(j)e
−aV =

ωgd

(
Adn(j)e

−κbV + λ1(j) ·B2(j)e
aV + λ2(j) ·B1(j)e

−aV
)
+

ωgbRb(v=V,j)

Aup(j)e
−κbV − ωgdAdn(j)e

−κbV − ωgbRb(v=V,j) =

ωgd

(
λ1(j) ·B2(j)e

aV + λ2(j) ·B1(j)e
−aV

)
− λ1(j) ·B1(j)e

aV − λ2(j) ·B2(j)e
−aV

(12)

4 Solving for Beam and Diffuse Driven Compo-
nents Separately

The CESM and E3SM earth system models ask the land-model for a surface
albedo, given the cosine of the zenith angle, vegetation canopy characteristics,
soil characteristics and surface wetness, before the atmospheric model can pro-
vide the down-welling radiation conditions. Therefore, we must solve the
systems of equations, described in the previous subsections, with unit
downwelling forcings, and then have the capacity to scale the results
later in the time-step, when the actual magnitudes of the downwelling
boundary conditions are known.

To do this, we have to split the solution into two parts. We calculate two
solutions independently, one for when there is only beam radiation (Rb,atm =
1, Rd,atm = 0), and for when there is only diffuse radiation (Rb,atm = 0, Rd,atm =
1), which leaves use with separate sets of solution constants for beam only (λb)
and diffuse only (λd):

Rup(v) =

beam component︷ ︸︸ ︷
Rb,atmAupe

−κbv +B1e
avλ1,b +B2e

−avλ2,b +

diffuse component︷ ︸︸ ︷
B1e

avλ1,d +B2e
−avλ2,d

Rdn(v) = Rb,atmAdne
−κbv +B2e

avλ1,b +B1e
−avλ2,b +B2e

avλ1,d +B1e
−avλ2,d

(13)

Note that there is no A term for the diffuse only portion, as that term drops
out when beam radiation is zero. Note that the unit downwelling diffuse term
Rd,atm, is not explicitly cast in this representation. It is implicitly part of this
solution, and introduced via the balance Equation (5), with a value of one for
the diffuse side of the solution, and a value of zero for the beam side of the
solution.
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5 Sunlit Leaf Fractions

The sunlit fraction of leaves is related to the attenuation of beam radiation as
it impinges upon the scattering elements vertically through the canopy. Recall,
the intensity of beam radiation, given an upper boundary flux of Rb0 uses Beer’s
law of exponential decrease, using a beam optical depth −κb and total depth
integrated vegetation area index v:

Rb(v)

Rb0
= e−κbv

(14)

This is consistent with the function that defines the sunlit fraction fsun of
the scattering media at depth v (also see NCAR Technical Note):

fsun(v) = e−κbv

(15)

For FATES, we need to generalize this formulation to incorporate a canopy
layer above, and the mean sunlit fraction over a depth of interest v1 to v2. First,
lets define the depth as the depth at the top of the layer vtop, and the delta
from that top v.

fsun(v) = e−κb(vtop+v)

fsun(v) = e−κbvtope−κbv

(16)

The first term in the in Equation 16 can alternately be defined as the ratio of
the beam radiation Rb0(c) at the top of canopy layer c , relative to the incident
radiation intensity at the top of the canopy Rb,atm:

fsun(c,v) =
Rb0(c)

Rb,atm
e−κbv

(17)

To get the mean sunlit fraction, we integrate from our points of interest and
divide by the difference.

fsun(c,v1−v2) =
Rb0(c)

Rb,atm

1

v2 − v1

∫ v2

v1

e−κbvdv

(18)
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fsun(c,v1−v2) =
Rb0(c)

Rb,atm

e−κbv1 − e−κbv2

κb(v2 − v1)

(19)

6 Appendix

6.1 Full Derivation of the Analytical Generalized Solution

Starting with the conservation equation, see Equation 1:

dRdn

dv
= −κd(1− (1− βd)ω)Rdn + κdβdωRup + κbω(1− βb)Rb0e

−κbv

dRup

dv
= κd(1− (1− βd)ω)Rup − κdβdωRdn − κbωβbRb0e

−κbv

(20)

The first step is to and recast the equations as R− and R+:

R+ = Rup +Rdn, R− = Rdn −Rup

dR+

dv
=

dRup

dv
+

dRdn

dv
,

dR−

dv
=

dRdn

dv
− dRup

dv
(21)

dR+

dv
=
[
κd(1− (1− βd)ω)Rup − κdβdωRdn − κbωβbRb0e

−κbv
]
+[

−κd(1− (1− βd)ω)Rdn + κdβdωRup + κbω(1− βb)Rb0e
−κbv

]
dR−

dv
=
[
−κd(1− (1− βd)ω)Rdn + κdβdωRup + κbω(1− βb)Rb0e

−κbv
]

−
[
κd(1− (1− βd)ω)Rup − κdβdωRdn − κbωβbRb0e

−κbv
]

(22)

Moving terms around and re-combing the Rup and Rdn:

dR+

dv
=− κd [1− ω + 2βdω]R− + κb [ω − 2ωβb]Rb0e

−κbv

dR−

dv
=− κd [1− ω]R+ + κbωRb0e

−κbv

(23)
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Now that each equation has only one term, we can differentiate to get the
second derivative:

d2R+

dv2
=− κd [1− ω + 2βdω]

dR−

dv
− κ2

b [ω − 2ωβb]Rb0e
−κbv

d2R−

dv2
=− κd [1− ω]

dR+

dv
− κ2

bωRb0e
−κbv

(24)

Replace the first order differential terms with their expansions, and do some
algebra:

d2R+

dv2
=κ2

d (1− ω) (1− ω + 2βdω)R+ − [κd (1− ω + 2βdω) + κb(1− 2βb)]κbωRb0e
−κbv

d2R−

dv2
=κ2

d (1− ω) (1− ω + 2βdω)R− − [κd (1− ω) (1− 2βb) + κb]κbωRb0e
−κbv

(25)

Now we have two expressions where the second order differential is only
dependent on its self and a constant, for which there is an analytical solution
with unknown constants λ1 and λ2, given the form:

d2y

dx2
=ay + be−cx

y(x) =
be−cx

c2 − a
+ λ1e

√
ax + λ2e

−
√
ax (26)

We can then cast Equation 25 in this form, noting to give them unique
constants.

a =
√
κ2
d (1− ω + 2βdω) (1− ω)

b1 =− [κd (1− ω + 2βdω) + κb(1− 2βb)]κbωRb0

b2 =− [κd (1− ω) (1− 2βb) + κb]κbωRb0

R+ =
b1e

−κbv

κ2
b − a2

+ λ1e
av + λ2e

−av

R− =
b2e

−κbv

κ2
b − a2

+ λ3e
av + λ4e

−av

(27)

We have two analytical solutions, yet we have four unkown constants (λ’s).
In the next steps, we calculate the derivatives of the analytical solutions, and
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then compare them against the original transformed conservation equations
(23), to find equivalence of the λ terms in the R+ and R− equations.

d

dv
[R+] =

−κbb1e
−κbv

κ2
b − a2

+ λ1ae
av − λ2ae

−av

d

dv
[R−] =

−κbb2e
−κbv

κ2
b − a2

+ λ3ae
av − λ4ae

−av

(28)

Note that after the substitutions have been made, there are three different
components of the equations, the terms not associated with any λ’s (the in-
tercept), the terms associated with λ1 and λ3 attached to eav, and the terms
associated with λ2 and λ4 attached to the e−av. The λ3 and λ4 terms can be
substituted by expressions with respect to λ1 and λ2, respectively, via a term
ν:

ν =

√
(1− ω)

(1− ω + 2βdω)

λ3 =− νλ1

λ4 =νλ2

(29)

(An important note about this previous step: In order to simplify the
ν term, we perform an algebraic manipulation where we square the denominator
and the numerator, and then take the square root of the whole fraction. This
manipulation is only possible if the fraction has only positive terms for both
numerator and denominator. Those who are reproducing this result, make sure
this is so! Notice in the result here, that this is true, because both ω and βd are
by definition, always positive and less than 1.)

The analytical solution for the transformed coordinates can then be recast with
just two unknown terms:

R+ =
b1e

−κbv

κ2
b − a2

+ λ1e
av + λ2e

−av

R− =
b2e

−κbv

κ2
b − a2

− νλ1e
av + νλ2e

−av

(30)

The analytical solution can then be re-cast on the original coordinates, Rup

and Rdn. Here is the reverse transformation back to those coordinates.
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Rup = 1
2 (R+ −R−)

Rdn = 1
2 (R+ +R−)

(31)

The result, Equation 32, is defined by various known constants (some rep-
resented by combined terms) and the two unknown constants λ, which sets up
various methods of solution where the basis has two equations and two un-
knowns.

Rup =

Aup term︷ ︸︸ ︷
1

2

b1 − b2
κ2
b − a2

e−κbv + λ1

B1 term︷ ︸︸ ︷
1

2
(1 + ν) eav + λ2

B2 term︷ ︸︸ ︷
1

2
(1− ν) e−av

Rdn =

Adn term︷ ︸︸ ︷
1

2

b1 + b2
κ2
b − a2

e−κbv + λ1

B2 term︷ ︸︸ ︷
1

2
(1− ν) eav + λ2

B1 term︷ ︸︸ ︷
1

2
(1 + ν) e−av

(32)

This form of the two-stream analytical solution can then be compared with
the more simplified form shown earlier in this document, Equation 2.
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